Problem 47

For vectors $\overrightarrow{\mathbf{B}}=-\hat{\mathbf{i}}-4 \hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{A}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}$, calculate (a) $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ and its magnitude and direction angle, and (b) $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$ and its magnitude and direction angle.

Solution

Part (a)
In order to add the vectors, add their respective components.

$$
\begin{aligned}
\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}} & =(-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}})+(-\hat{\mathbf{i}}-4 \hat{\mathbf{j}}) \\
& =(-3-1) \hat{\mathbf{i}}+(-2-4) \hat{\mathbf{j}} \\
& =-4 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}
\end{aligned}
$$

Calculate the magnitude.

$$
\begin{aligned}
|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}| & =\sqrt{(-4)^{2}+(-6)^{2}} \\
& =2 \sqrt{13} \\
& \approx 7.21
\end{aligned}
$$

The direction angle of $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ is

$$
\theta=\tan ^{-1}\left(\frac{-6}{-4}\right)+180^{\circ} \approx 236^{\circ}
$$

where 180° is added because the vector sum is in the third quadrant.

Part (b)

In order to subtract the vectors, subtract their respective components.

$$
\begin{aligned}
\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}} & =(-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}})-(-\hat{\mathbf{i}}-4 \hat{\mathbf{j}}) \\
& =(-3+1) \hat{\mathbf{i}}+(-2+4) \hat{\mathbf{j}} \\
& =-2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}
\end{aligned}
$$

Calculate the magnitude.

$$
\begin{aligned}
|\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}| & =\sqrt{(-2)^{2}+2^{2}} \\
& =2 \sqrt{2} \\
& \approx 2.83
\end{aligned}
$$

The direction angle of $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$ is

$$
\theta=\tan ^{-1}\left(\frac{2}{-2}\right)+180^{\circ}=135^{\circ}
$$

where 180° is added because the vector difference is in the second quadrant.

